Solution of Volterra Integro-Differential Equations with Generalized Mittag-Leffler Function in the Kernels

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fractional differential equations for the generalized Mittag-Leffler function

*Correspondence: [email protected] 3Department of Mathematical Sciences, UAE University, Al Ain, United Arab Emirates Full list of author information is available at the end of the article Abstract In this paper, we establish some (presumably new) differential equation formulas for the extended Mittag-Leffler-type function by using the Saigo-Maeda fractional differential operators involvin...

متن کامل

Cascade of Fractional Differential Equations and Generalized Mittag-Leffler Stability

This paper address a new vision for the generalized Mittag-Leffler stability of the fractional differential equations. We mainly focus on a new method, consisting of decomposing a given fractional differential equation into a cascade of many sub-fractional differential equations. And we propose a procedure for analyzing the generalized Mittag-Leffler stability for the given fractional different...

متن کامل

Solution of Volterra-type integro-differential equations with a generalized Lauricella confluent hypergeometric function in the kernels

The object of this paper is to solve a fractional integro-differential equation involving a generalized Lauricella confluent hypergeometric function in several complex variables and the free term contains a continuous function f (τ). The method is based on certain properties of fractional calculus and the classical Laplace transform. A Cauchy-type problem involving the Caputo fractional derivat...

متن کامل

Autoconvolution equations and generalized Mittag-Leffler ‎functions

This article is devoted to study of the autoconvolution equations and generalized Mittag-Leffler functions. These types of equations are given in terms of the Laplace transform convolution of a function with itself. We state new classes of the autoconvolution equations of the first kind and show that the generalized Mittag-Leffler functions are solutions of these types of equations. In view of ...

متن کامل

Application of the block backward differential formula for numerical solution of Volterra integro-differential equations

In this paper, we consider an implicit block backward differentiation formula (BBDF) for solving Volterra Integro-Differential Equations (VIDEs). The approach given in this paper leads to numerical methods for solving VIDEs which avoid the need for special starting procedures. Convergence order and linear stability properties of the methods are analyzed. Also, methods with extensive stability r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Integral Equations and Applications

سال: 2002

ISSN: 0897-3962

DOI: 10.1216/jiea/1181074929